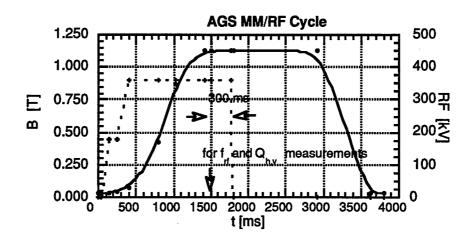
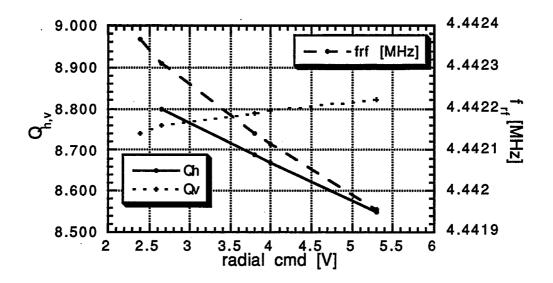
	AGS/AD/AGS Studies Report No. 510		
	AGS Complex Machine Studies		
	(AGS Studies Report No. 318)		
	AGS Working Points for AtR. MS L		
Study Period:	12 October 1994, 12:45 - 14:30 pm		
Participants:	L. Ahrens, K.Brown, E. Gill, W. van Asselt, M. Tanaka		
Reported by:	M. Tanaka		
Machine:	AGS @ extraction flattop		
Beam:	Bunched Au ⁷⁷⁺ beam @ p = 11.23 GeV/c/N		
Instruments:	IPM, Tune Meter, CT, Frequency Analyzer, WCM		
Aim:	To explore the optimal working point for AtR transfer.		


Introduction:

This study is the first attempt to get some real data in order to specify the basic AGS NewFEB operation parameters for AtR beam transfer[1].

Setup and Data Taking:

We used the current machine setup for the FY95 HIP/Au⁷⁷⁺ SEB run except for the following changes:

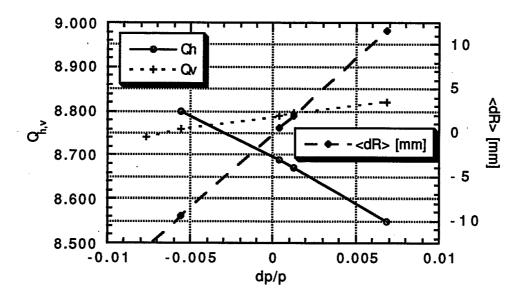

- -the rf turnoff time was delayed 300 ms from 1467 ms to 1767 ms from $t_{\rm O}$ and the rf voltage was flattened at 360 kV during this period.
- -the SEB flattop in the main magnet cycle was flattened at 1.1250 T.
 - p = 11.23 GeV/c/N or 28.725 GeV/c/Charge or $B\rho = 95.82 \text{ T-m}$.
- -SMF05, SMF10 and DSX's were turned off.

-the local oscilloscope time window was set such that we could monitor the current transformer(CT) reading during the flattop.

-the time of the rf frequency, f_{rf} measurements was set at t = 1500 ms with a 20 ms window.

First, we systematically varied the mean beam radius <dR> by changing the voltage of the radial shifter(RS) and measured f_{rf} and $Q_{h,v}$ at t = 1500 ms for each setting to find out the value corresponding to <dR > = \sim 0.0 as shown in the following figure.

- \triangle the beam was lost at RS = 2.2 and 5.5 V.
- \angle we set RS = 3.8 V for <dR> = \sim 0.0.
- on the flattop,
 - -Au⁷⁷⁺ intensity = $\sim 1.10^9$ ions/cycle.
 - -tune control quadrupole currents, $IQ_{h,V} = \{275A, -430A\}$ (on from 1250 2920 ms)
 - -chromaticity control sextupole currents, $IS_{h,v} = \{340A, 0A\}$.
 - -skew quadrupole current ISKQ =50 A.


Then, sitting at $\langle dR \rangle = -0.0$ mm, we turned on/off the chromaticity sextupoles, the skew quadrupoles and the tune quadrupoles to see whether there were any changes in beam intensity or in bunch shape.

Results:

•The measured f_{rf} values are converted to dp/p_0 and to dR using the formula:

$$\langle dR \rangle = \alpha_D \cdot R_O \cdot (dp/p_O)$$
 and $f_{rf} = h \cdot f_{rev} = hc \cdot (p/E)/(2\pi \cdot (R_O + \langle dR \rangle))$

where $\alpha_p = \sim 0.0132$, $R_0 = 128.452$ m, $p_0 = 11.228$ GeV/c/N, h = 12, c = speed of light and p/E = β_{rel} . The results are shown in the following figure. For dp/p₀ = 0 at <dR> = 0, we should have $f_{rf} = 4.442146$ MHz which is very close to the measured value $f_{rf} = 4.442139$ (\pm 35) MHz at RS = 3.8 V, corresponding to dp/p₀ = 0.00039 or <dR> = 0.66 mm. From the figure, we have $Q_{h,v} = \{8.69, 8.79\}$ at dp/p = 0 and $\xi_{h,v} = dQ_{h,v}/(dp/p) = \{-20, +4.8\}$. These values are consistent with the MAD predictions of $Q_{h,v} = \{8.668, 8.793\}$ and $\xi_{h,v} = \{-22.6, +7.7\}$ with $IQ_{h,v} = \{275A, -430A\}$ and $IS_{h,v} = \{340A, 0A\}$

•At RS = 3.8V (i.e., <dR> = ~0, 0 mm)

action	f _{rf} [MHz]	$\{Q_h, Q_v\}$	MAD Q _{h,v} , and ξ _{h,v}		
 startup point 	4.442139 ± 35		{8.668, 8.793} {-22.6, 7.7}		
2 turned off the chro. sexts	4.442136 ± 37	{8.67, 8.795}	{8.668, 8.793} {-36.0, 15.0}		
- turned off the skew quads	4.442134 ± 33	{8.67, 8.795}			
3 turned off the tune quads	4.442141 ± 51	{8.65, 8.685}	{8.639, 8.677} {-36.0, 16.0}		
the beam survived but it appeared very tight.					
$\textcircled{9} IQ_{h,v} = \{550A, -480A\}$	4.442143 ± 33	{8.79?, 8.758}	{8.765, 8.763}		
$ (5) IQh, v = {475A, -480A} $	4.442143	{8.735, 8.775}	{8.736, 8.777}		

•Other data during the 300 ms period

a) CT data:

throughout the study, we watched CT readings on the oscilloscope for any beam losses and did not see any significant changes except it appeared that there was a steady decrease in intensity by 3-4 % (~18 % loss over the 1.5 sec flattop).

b) IPM data:

- it did not reveal any clear beam losses.
- $\varepsilon = \varepsilon^*_{h,V}(95\%)$ stayed constant at $\{10, 7\}\pi$ mm-mrad.
- c) WC M mountain range display:
 - \triangle the bunch shape stayed constant with the full bunch length = \sim 22 ns.

Miscellaneous

 \not we turned on/off DSX's and BLWF07 (a bump for SMF05&F10) and saw no effects. However, it turned out that these devices started at t = 1580 ms while f_{rf} and $Q_{h,v}$ measurements were done at t = 1500 ms.

 \not E we did not see any changes in the CT reading when we set $\xi_h = 20$ and 16 by turning back the chromaticity sextupoles.

Conclusions:

- The Au⁷⁷⁺ bunched beam at <dR> =0 could survive without any chromaticity and tune corrections for the 300 ms flattop at B ρ = 95.83 T-m (AGS proposed maximum B ρ) though it was very tight and no extraction bumps existed.
- ∠E We prefer the working point $Q_{h,v} = \{-8.735, -8.775\}$ to $\{-8.775, -8.735\}$ since it requires less current for the tune control quadrupoles. It should be noted that the NewFEB bumps will cause a tune shift $\Delta Q_h = -0.02$.
- For the next study, we propose
 - while maintaining $Q_{h,v} = \{8.735,8775\}$ at < dR> = 0,
 - study chromaticity effects,
 - study bump effects (using BLWF07 and/or BLWH20),

by measuring CT readings quantitatively, and taking more complete TM, IPM and WCM data.

References:

[1] BNL-48230, M. Tanaka and Y.Y. Lee, The AGS-Booster Complex for the g-2 Experiment and RHIC Injection.